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1. INTRODUCTION

 Cointegration analysis of non-stationary panel data is typically based on the 
univariate framework, see Phillips, Moon (1999), where the OLS-based cointe-
gration tests developed firstly by Kao (1999), Pedroni (1999) and McCoskey, 
Kao (1998) are considered and the DOLS or the FMOLS estimator is employed. 
Assuming lack of any long-run cross-sectional dependencies, this approach 
shall work reasonably well for small homogenous systems with one cointegrat-
ing vector. However, this will not be valid when the long-run cross-sectional 
dependencies occurs, for example due to cross-sectional cointegrating vector, 
see Banerjee et al. (2004) and Jacobson et al. (2008), as well as in case of 
medium- or large-sized systems with a number of cointegration vectors. Clearly, 
the panel VAR (PVAR) model proposed by Larsson, Lyhagen (2007) should be 
considered here, even though in case of lack of long-run cross-sectional de-
pendencies also the global VAR (GVAR) model can be applied, see Pesaran et 
al. (2004). 
 The multivariate cointegration analysis of panel data was considered first by 
Groen, Kleibergen (2003) and Larsson, Lyhagen (2007), who advocated use of 
VAR models for analysis of non-stationary panel data (see also Larsson, Ly-
hagen, 2000; Larsson et al., 2001 and Jacobson et al., 2008). Moreover, in the 
case of panel VAR framework, Anderson et al. (2006) suggested the use of lev-
els canonical correlation analysis (LCCA), as proposed by Box, Tiao (1977) and 
Bewley et al. (1994), instead of maximum likelihood (ML) estimation proposed 
by Johansen (1988). Anderson et al. (2006) highlight that they were able to find 
an additional cross-sectional cointegrating vector in empirical data using Box 

1 University of Lodz, Faculty of Economics and Sociology, Chair of Econometric Models and Fore-
casts, 41 Rewolucji 1905 r. St, 90–214, Lodz, Poland, email:piotr.keblowski@uni.lodz.pl. 
 2 Financial support from the National Science Centre in Poland through the research grant 
D/HS4/01767 is gratefully acknowledged. 



174 Przegląd Statystyczny, tom LXV, zeszyt 2, 2018 
 
and Tiao approach and the LCCA-based cointegration rank test, as opposed to 
the results suggested by Johansen’s tests. 
 The aforementioned finding of Anderson et al. (2006) provides a rationale for 
investigating small sample properties of cointegration rank tests for both Box 
and Tiao as well as Johansen approach in the framework of panel VAR process 
with cross-sectional cointegrating vectors. To this end, performance of the min-
root and the trace test of Yang, Bewley (1996) are compared with the widely 
used ML-counterparts derived by Johansen (1988) – the max-root and the trace 
test. 
 Since the cointegration rank tests suffer from severe size distortions in small 
samples, see Johansen (2002), the bootstrap tests are considered. The algo-
rithm of the bootstrap cointegration rank test is similar to algorithms proposed by 
van Giersbergen (1996) and Svensen (2006), and the asymptotic theory of the 
bootstrap method was given by Svensen (2006) and Cavaliere et al. (2012). 
Note however, that even when the bootstrap cointegration rank test or size-
corrected test like the test with Bartlett correction is used, some significant size 
distortions can still occur, especially for high dimensional process such as panel 
VAR. 
 The comparative investigations based on the purely time-series context are 
available in Bewley et al. (1994) and Bewley, Yang (1995). Moreover, perfor-
mance of canonical correlation estimators of cointegrating vectors for panel VAR 
models were investigated by Kębłowski (2016). 

 
2. PANEL VAR MODEL, CANONICAL CORRELATION ANALYSIS 

AND COINTEGRATION TESTS 

 
 Consider two main strands of model’s specification for the panel VAR/VEC 
process. The first one would be the straightforward panel augmentation of the 
VEC model for the double-indexed processes 

 
௧ܡ∆  = મܡ,௧ିଵ +  ડΔܡ,௧ି + ܌௧ + ௧,ିଵࢿ

ୀଵ  (1)

 
where ܡ௧ = ሾݕଵ௧  ݕଶ௧  ௧ሿ′ is a P-dimensional vector of observations for givenݕ …
cross-section ݅ and period ݐ, મ, and ડ are ܲ × ܲ matrices of coefficient, ܌௧ and  denote a N-dimensional vector of (common) deterministic components and  ܲ × ܰ matrix of their coefficients and ઽ௧ is a P-dimensional independently and 
identically distributed error term with mean equal to zero and covariance matrix ષ for cross-section ݅. 
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 Consider next the following VEC model for the panel VAR process 
 
௧ܡ∆  = મܡ௧ିଵ +  ડΔܡ௧ି + ܌௧ + ઽ௧ିଵ

ୀଵ , (2)

 
where ܡ௧ = ሾܡଵ௧ᇱ ଶ௧ᇱܡ   ூ௧ᇱܡ … ሿ′ is a IP-dimensional vector of observations for period  ݐ, મ and ડ are ܲܫ × ܲܫ matrices of coefficient,  denotes ܲܫ × ܰ matrix of deter-
ministic term coefficients and ઽ௧ is a IP-dimensional independently and identically 
distributed error term with mean equal to zero and covariance matrix ષ.  
 
 In case of the cointegrated panel VAR process matrix મ can be decomposed 
into ܲܫ ×  and ۰, and the panel VEC model is ۯ full rank matrices ܴܫ
 
ܡ∆  = ௧ିଵܡ′۰ۯ +  ડΔܡ௧ି + ܌௧ + ઽ௧.ିଵ

ୀଵ  (3)

 
 Clearly, model (1) assumes lack of any cross-sectional dependencies, where-
as model (2) allows for both short- and long-run cross-sectional dependencies, 
since ۰ ,ۯ, ડ and ષ matrices are not assumed to be block-diagonal (even 
though in practice ۰ is most often assumed to be block-diagonal, see Larsson, 
Lyhagen, 2007). This allows for four different sources of cross-sectional de-
pendence: in the error term, in the short-run dynamics, in the adjustments to the 
long-run equilibrium and in the cointegration space, as opposed to the assump-
tions of model (1), and is the main rationale for using model (2) instead of model 
(1). The only, but significant, disadvantage of using model (2) is the potential 
dimensionality effect that can limit its application for small samples in case of 
a large number of cross-sections and variables simultaneously. 
 The levels canonical correlation analysis of Box and Tiao is performed as 
follows. At first, the short-run effects are concentrated out and the concentrated 
regression is 
 
௧ܡ  = દܡ௧ିଵ + ઽ௧, (4)
 
where ܡ௧ିଵ = ௧ܡ − ௧ିଵܡ  ,௧ܢ௧′ሻିଵܢ௧ܢ௧′ሺܢ௧ܡ = ௧ିଵܡ −   ௧ܢ௧′ሻିଵܢ௧ܢ௧′ሺܢ௧ିଵܡ
and ࢠ௧ = ሾΔ࢟௧ିଵ′ …  Δܡ௧ିାଵ′܌୲′ሿ′. 
 
 Next, the canonical transformation is achieved by solving the eigenvalue prob-
lem 
 
 ห܇ߣ෩܇෩ᇱ − ൫܇෩܇෩ିଵ൯൫܇෩ିଵ܇෩ିଵ൯ିଵ൫܇෩ିଵ܇෩൯ห = 0 (5)
 
for the eigenvalues 0 < መଵߣ < ⋯  < መூߣ < 1  and eigenvectors ܄ = ሾܞොଵ  ොூሿ, ofܞ …
which the first ܴܫ constitute the cointegration subspace. 
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 To compute the cointegration tests of Yang, Bewley (1996), the following se-
ries are calculated 
 
ො௧ିଵܡ  = ො௧ିଵ (6a)ܡୄ′ۯ
 
and 
 
ො௧ܡ  = ො௧ିଵܡ + ௧, (6b)܍′ୄ۱ۯ
 
where ܍௧ denotes residuals from concentrating out the short-run effects in (4) 
and ۱ is the impact matrix from the moving average representation,  ۱ = ۰′ୄ൫ۯୄ′ડ۰ୄ൯ିଵۯୄ and ડ = ۷ − ∑ ડ݇1=1݇−ܭ .  
 
 Then the following eigenvalue problem is solved 
 
 ห܇ߤ෩܇෩ᇱ − ൫܇෩܇෩ିଵ′൯൫܇෩ିଵ܇෩ିଵ′൯ିଵ൫܇෩ିଵ܇෩′൯ห = 0 (7)
 
for the eigenvalues 0 < ଵߤ̂ < ⋯  < ூሺିோሻߤ̂ < 1. The LCCA-based cointegration 
rank tests of the null ܪ: rank ሺમሻ = :ଵܪ vs. the alternative ܴܫ rank ሺમሻ =  are ܴܫ
calculated as the minimum-root test ݉݅݊ݐݎ = ܶሺ1 − ݁ܿܽݎݐ ଵሻ and the trace testߤ̂ = ܶ ∑ ൫1 − ൯ூሺିோሻୀଵߤ̂ . Both tests diverge under the alternative, see 
Yang, Bewley (1996). 
 
 Similarly, the canonical correlation analysis of differences and lagged levels, 
derived by Johansen (1988), is calculated by concentrating out at first the short-
run effects, thus the concentrated regression is 
 
 Δܡො௧ = ௧ିଵ. (8)ܡ′۰ۯ
 
 Then the canonical transformation is performed by solving 
 
 ห܇ߣ෩ିଵ܇෩ିଵᇱ − ൫܇෩ିଵΔ܇෩′൯൫Δ܇෩Δ܇෩′൯ିଵ൫Δ܇෩܇෩ିଵ′൯ห = 0 (9)
 
for the eigenvalues 1 < መଵߣ < ⋯  < መூߣ < 0 and ۰ = ሾܞොଵ  ොூோሿ. The cointegrationܞ …
tests of the same hypotheses as in Yang, Bewley (1996) are calculated as the 
maximum-root test ݉ܽݐݎݔ = −ܶln൫1 − ݁ܿܽݎ መூோାଵ൯ and the trace testߣ =−ܶ ∑ ln൫1 − መ൯ூୀூோାଵߣ . 
 

3. DESIGN OF EXPERIMENT AND RESULTS 
 
 Monte Carlo simulation is used to compare performance of the LCCA-based 
and the ML-based cointegration rank tests within the framework of second-order 
panel VEC model (3) with five variables for each cross section ሺܲ = 5ሻ and 
a constant restricted to the cointegration space 
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 Δܡො௧ = ௧ିଵᇱܡ۰ᇱሾۯ ᇱሿᇱܒ + ડଵΔܡ௧ିଵ + ઽ௧, (10)
 
where short- and long-run cross-sectional dependencies are allowed and the 
error term tε  comes from the multivariate normal distribution, ઽ௧ ∽ ூܰሺ; ષሻ, 
with covariance matrix from the inverse Wishart distribution – ∽ ூܹିଵሺ۷; 100ሻ.  
 
 The results for the case with an unrestricted constant are not reported here 
(available upon request), since they do not alter the conclusions drawn from the 
former case. Two cointegrating vectors for each cross-section are imposed plus 
an additional cross-sectional cointegrating vector describing a homogeneous 
long-run relationship between the fifth variable of each cross-section 
 
 

۰ =
ێێۏ
ێێێ
ۍێ 1 − 10 000 0 1 − 10  ⋯  11 1 − 10 0 00 0 1 − 10 ⋯  11⋮ ⋮ ⋮ ⋮  ⋯ 1 − 10 000 01 − 10 110 0 0 0 1 ߚ 0 0 0 0 ⋯ ߚ 0 0 0 0 ۑۑے1

ۑۑۑ
(11) ,ېۑ

 
where ߚ = −൫1/ሺܫ − 1ሻ൯. The loadings matrix allows for the long-run cross- 
-sectional adjustments 
 
ۯ  = ێێۏ

0.5−ۍێێ 0 0 0 0 … −0.1 0 0 0 00 0 −0.5 0 0 0 0 −0.1 0 0⋮ ⋮−0.1 0 0 0 0 … −0.5 0 0 0 00 0 −0.1 0 0 0 0 −0.5 0 00 0 0 0 −0.5 … 0 0 0 0 ۑۑے0.5−
(12) .ېۑۑ

 
 The cross-sectional dependence in the short-run adjustments is allowed, 
since ∀సೕ ,ଵߛ = 0.5 and ∀ಯೕ -,ଵ~ܷሺ−0.1,0.1ሻ. The roots of the autoregressive polߛ

ynomial are computed in order to exclude explosive roots in the DGP. The initial 
values comes from the multivariate normal distribution and the first hundred 
observations are removed. The number of cross-sections varies from two to six 
and the sample size is ܶ ∈ ሼ100, 200, 400, 800ሽ. The number of replications for 
the Monte Carlo simulation is 10000. 
 The algorithm of the bootstrap method for cointegration rank tests is similar to 
algorithms proposed by van Giersbergen (1996) and Svensen (2006), and it is 
as follows: 
Step 1. Estimate (2) by means of LCCA, for ݉݅݊ݐݎ and ݁ܿܽݎݐ tests, or 

ML for ݉ܽݐݎݔ and ݁ܿܽݎݐ tests, and calculate a realization of the test 
statistic. 
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Step 2. Estimate the parameters under the null – (3) and check whether the 

roots of the autoregressive polynomial are equal to 1 or lie outside the 
unit circle. 

Step 3. Using (3) compute recursively bootstrap sample using sampled residuals 
drawn with replacement from the estimated residuals. 

Step 4. Calculate bootstrap realization of the test statistic. 
Step 5. Repeat steps 3 to 4 a large number of times. 
Step 6. Reject the null ܪ: rank ሺમሻ = -if the test statistic from step (1) is larg  ܴܫ

er than the critical value from the bootstrap distribution. 
The number of replications for the bootstrap method is 1000. 
 The relative frequencies of rejecting the false null ܪ: rank ሺમሻ =  and the  ܴܫ
true null ܪ: rank ሺમሻ = ܴܫ + 1 of bootstrap cointegration tests for PVAR model 
(10) are contained in tables 1–2 respectively. Comparison of the empirical size 
of the tests reveals that the ML-based cointegration rank tests ݉ܽݐݎݔ and ݁ܿܽݎݐ are undersized in small samples, as compared to 5% nominal size, 
whereas the LCCA-based cointegration rank tests ݉݅݊ݐݎ and ݁ܿܽݎݐ 
are oversized. The size distortion becomes negligible in general only for a quite 
long samples of at least 400 observations within time dimension, even though 
for PVAR models with moderate dimension ሺܲܫ ≤ 20ሻ and 200 observations it 
seems to be still under control. 

 
Table 1. EMPIRICAL SIZE OF BOOTSTRAP COINTEGRATION TESTS FOR PANEL 

VAR PROCESS WITH CROSS-SECTIONAL COINTEGRATING VECTOR 

I T 
ML LCCA 

maxroot trace minroot trace 

2 100 0.025 0.045 0.124 0.134 
 200 0.058 0.081 0.065 0.057 
 400 0.057 0.088 0.049 0.037 
 800 0.056 0.053 0.043 0.033 

3 100 0.000 0.008 0.306 0.308 
 200 0.046 0.050 0.108 0.082 
 400 0.057 0.056 0.052 0.039 
 800 0.052 0.064 0.036 0.020 

4 100 0.000 0.001 0.240 0.777 
 200 0.021 0.036 0.090 0.079 
 400 0.040 0.057 0.061 0.039 
 800 0.048 0.048 0.029 0.015 

5 100 0.000 0.000 0.334 0.959 
 200 0.000 0.012 0.217 0.226 
 400 0.052 0.064 0.066 0.052 
 800 0.066 0.073 0.054 0.030 

6 100 — — — — 
 200 0.000 0.002 0.225 0.557 
 400 0.049 0.065 0.075 0.065 
 800 0.048 0.063 0.046 0.026 
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Table 2. PERFORMANCE OF BOOTSTRAP COINTEGRATION TESTS FOR PANEL 
VAR PROCESS WITH CROSS-SECTIONAL COINTEGRATING VECTOR 

I T 
ML LCCA 

maxroot trace minroot trace 

2 100 0.540 0.432 0.280 0.320 
 200 1.000 0.999 0.619 0.495 
 400 1.000 1.000 1.000 1.000 
 800 1.000 1.000 1.000 1.000 

3 100 0.002 0.026 0.447 0.540 
 200 0.948 0.735 0.431 0.486 
 400 1.000 1.000 0.987 0.965 
 800 1.000 1.000 0.997 0.987 

4 100 0.000 0.002 0.354 0.875 
 200 0.298 0.293 0.605 0.559 
 400 1.000 0.999 0.989 0.922 
 800 1.000 1.000 0.992 0.957 

5 100 0.000 0.000 0.386 0.969 
 200 0.004 0.074 0.798 0.740 
 400 1.000 0.915 0.990 0.899 
 800 1.000 1.000 0.998 0.955 

6 100 — — — — 
 200 0.000 0.017 0.546 0.871 
 400 0.990 0.638 0.992 0.880 
 800 1.000 1.000 0.993 0.931 

 
 With respect to performance of both group of cointegration rank tests it can be 
seen that both the ML-based approach as well as the LCCA-based approach 
perform very poorly in short samples, as compared to the actual size of each 
test 0.05. According to the results, it is very likely that in a very short samples of 
100 observations in time dimension and less, the LCCA-based cointegration 
rank tests will indicate at an additional cross-sectional cointegrating vector, the 
ML-based counterparts will lead to an opposite conclusion, all this regardless of 
the actual existence of the cross-sectional cointegrating vector. 
 Moreover, even though the performance of the tests is not size-adjusted, it 
can be easily noted that the ML-based cointegration rank tests perform in gen-
eral better than their LCCA-based counterparts in detecting an additional cross-
sectional cointegrating vector within a PVAR framework, see the results for ܶ = 200 and ܫ = 2, 3 for example. As expected, in the case of long panel data 
with 400 observations within time dimension and more, performance of both 
approaches is close to unity and thus comparable. 
 The results of Monte Carlo investigation on small sample properties of boot-
strap cointegration rank tests for the PVAR model clearly suggest that the tests 
based on levels canonical correlation analysis are in general outperformed by 
the maximum likelihood cointegration rank tests, if the dynamic properties of the 
underlying process are properly specified. Moreover, the higher the number of 
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cross-sections is, the more observations within time dimension is needed in 
order to unambiguously infer on the cointegration rank for the PVAR model. 
If the dimension of the PVAR model ܲܫ exceeds 15 then as many as 400 obser-
vations can be needed in order to properly identify an additional cross-sectional 
cointegrating vector using the ML-based approach. 
 Clearly, the results show that the application of the bootstrap panel cointegrat-
ing rank test for the PVAR model given by (2) is in practice limited to the panels 
with few cross-sections, which makes the application of the tests for macro-
economic panels with larger cross-sectional dimension impossible in fact. This is 
an important drawback of the approach based on the PVAR model. 
 

4. CONCLUSIONS 
 

 In this paper we have examined small sample properties of the bootstrap 
cointegration rank tests for the unrestricted panel VAR model when short- and 
long-run cross-sectional dependencies occur in the underlying process generat-
ing non-stationary panel data. Two basic frameworks were employed: levels 
canonical correlation analysis and maximum likelihood estimation. The results 
shows that the bootstrap cointegration rank tests for the panel VAR model suffer 
from severe size distortions in small samples, with downward bias of the 
ML-based tests and the upward bias of the LCCA-based tests. Weak perfor-
mance of both approaches is observed for a very short sample of about 100 
observations within time dimension. As a result, the LCCA-based cointegration 
rank tests will easily indicate at an additional cross-sectional cointegrating vec-
tor, the ML-based counterparts can lead to an opposite conclusion, all this re-
gardless of the actual existence of the additional cointegrating vector. Moreover, 
it was found that the bootstrap cointegration rank tests for panel VAR model 
based on levels canonical correlation analysis are in general outperformed by 
the maximum likelihood cointegration rank tests. 
 The results of the investigation indicate that the bootstrap ML-based cointe-
gration rank tests perform quite well with respect to size distortion and power for 
small- and medium-sized PVAR models ሺܲܫ < 20ሻ, if there are at least 200 ob-
servations within time dimension. Whereas in case of large-sized PVAR models, 
say ሺܲܫ ≥ 20ሻ, long panel data with about 400 observations within time dimen-
sion are necessary. 
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ANALIZA MONTE CARLO WŁASNOŚCI TESTÓW KOINTEGRACJI 
DLA PANELOWEGO PROCESU VAR Z MIĘDZYPRZEKROJOWYMI 

WEKTORAMI KOINTEGRUJĄCYMI 
 

Streszczenie 
 

 W artykule przedstawiono wyniki badania własności bootstrapowych testów 
kointegracji dla panelowego procesu VAR z międzyprzekrojowymi wektorami 
kointegrującymi. Wyniki badania wskazują, że bootstrapowe testy kointegracji 
dla modelu PVAR, które oparte są na analizie korelacji kanonicznej poziomów, 
cechują się przeszacowaniem rozmiaru testu, z kolei bootstrapowe testy kointe-
gracji dla modelu PVAR wywiedzione z metody największej wiarygodności cha-
rakteryzują się zwykle niedoszacowaniem rozmiaru testu. Wykazano również, że 
bootstrapowe testy kointegracji dla modelu PVAR wywiedzione z metody naj-
większej wiarygodności cechują się zwykle lepszymi własnościami ze względu 
na moc testu. Wyniki badania wskazują, że własności bootstrapowych testów 
kointegracji dla modelu PVAR wywiedzionych z metody największej wiarygod-
ności cechują się satysfakcjonującymi własnościami małopróbkowymi dla mało-
wymiarowych modeli PVAR z ograniczoną liczbą przekroi. 
 Słowa kluczowe: międzyprzekrojowe wektory kointegrujące, analiza korelacji 
kanonicznej, testy kointegracji, panelowy model VAR, procedura Boxa i Tiao 

 
A MONTE CARLO COMPARISON OF LCCA- AND ML-BASED 

COINTEGRATION TESTS FOR PANEL VAR PROCESS 
WITH CROSS-SECTIONAL COINTEGRATING VECTORS 

 
Abstract 

 
 Small-sample properties of bootstrap cointegration rank tests for unrestricted 
panel VAR process are considered when long-run cross-sectional dependencies 
occur. It is shown that the bootstrap cointegration rank tests for the panel VAR 
model based on levels canonical correlation analysis are oversized, whereas the 
bootstrap cointegration rank tests based on maximum likelihood framework are 
undersized. Moreover, the former tests are in general outperformed by the latter 
in terms of performance. The results of the investigation indicate that the  
ML-based bootstrap cointegration rank tests perform well in small samples for 
small-sized panel VAR models with a few cross-sections. 
 Keywords: cross-sectional cointegrating vectors, canonical correlation analy-
sis, cointegration tests, panel VAR model, Box and Tiao approach 




